from Tresca's "flow ;" Clarke's two estimates accord more nearly with the theoretical value ; while Listing's, which is the latest of all, gives an agreement which is virtully exact. It we start from his estimate ($1: 288.4$), we get $g=\frac{4^{-2} \times 258.4}{(4716 t .1)^{4}} r=32.086 \mathrm{ft}$. Ganot's value is 32.088 , ft . It can hardly be believed that such a eoineidence is merely aceidental. If it is indiative, as I liave supposed, of inter-molecular iethereal action, it has an important bearing on tilat equilibrium, and it shows that Eath's shape and rigidity were not tixed in any past age, but are at all times adjusted to the reguirements of internal elasticity and external attractions. Any arguments which may be adduced in faror of such an adjustment may be urged, a fortiori, in support of the flow and thrust of a plastic material like ice. The relocity of terrestrial rotation, in the mean latitude which Prof. II. C. Lewis has indicated for the terminal moraine in Pennsylvania, is more than 1000 feet per second. The centrifugal force ennsequent upon such a relocity, together with the thrust of an iec-cap which extended to the pole, must greatly ficcilitate glacial flow. The equilibrating forees would work upon local glaciers, in the same way as upon a general ice-cap.

The Classification of the Lingulate Mammalia. By E. D. Cope.

(Rend before the American Philosophical Society, May 19, 18S2.)
In the present essay the osseous system is chiefly considered, and of this, the structure of the feet more than of any other part of the skeleton. The ungulata are here understond to be the hoofed placental Mammalia with enamel covered teeth, as distinguished from the unguiculate or clawed and the mutilate or flipper limbed, and the edentate or enamelless, groups. The exact circumscription and definition is not here attempted, though probably the brain furnishes an additional basis of it in the absence of the crucial, parietoöccipital, calcarine fissures, etc. Suflice it to say that it is on the whole a rather lomogeneons body of mammalia, especially distinguished as to its economy by the absence of forms accustoned to an insectivorous and earnivorous diet, and embraeing the great majority of the herbinorous types of the world.

The internal relations of this rast division are readily determined by reference to the characters of the teeth and feet, as well as other less important points. I have always insisted that the place of first importance should be given to the feet, and the discovery of rarions extinet types has justified this vipw. The predominant significance of this part of the skeleton was first appreciated by Owen, who defined the orders Perisso-
dactyla and Artioductyla. Professor Gill* has also used these characters to a large extent, but without giving them the exclusive weight that appears's to me to belong to them. Other authors have either passed them by unnoticed, or have correlated them or subordinated them to other characacters in a way which has left the question of true athinity and therefore of phylogeny, in a very unsatisfactory condition. Much light having been thrown on these points by recent discoveries in paleontology, the results, as they appear to me, are here given.

Fig. 1.
Fra. 1.-Left anterior foot of Elephas africanus (from De Blainville).
Carpus.-It is well known that in the Perissodactyla and Artiodactyla, the bones of the two rows of the carpus alternate with each other ; that the lunar for instance rests on the unciform, and to a varying degree ou the magnum, and that the scaphoides rests on the magnum and to some degree on the trapezoides and trapezium. It is also known that in the Proboscilea, another state of affairs exists ; i. e., that the bones of the two rows do not alternate, but that the scaphoides, lunar and cuneiform, rest ${ }^{*}$ directly on the trapezium and trapezoides, the magnum, and the unciforms respectively. The preceding characters are sometimes included in the definitions of the respective orders. Further than this they have not been used in a systematic sense.
Professor Gill says of the carpus of the Hyracoillea, "carpal bones in two interlocking rows; cuneiform extending inwards (and articulating with magnum) ; *** unciform and lunar separated by the interposition of the cunciform and magnum." Professor Flower \dagger gives a figure which justifies these statements, but neither the one nor the other agree with $m y$

[^0]specimens. In the manus of a Hyrux copensi:. (from Verreaux, Paris), I find the following eondition of the carpus. The bones of the two series are articulated consecutively, and not altematery; hicy do not interlock, but inasmuch as the magnum is a little narrower than the lunar, the latter is just in contact (anteriorly) with the trapezoides (centrale) on the one side, and the unciform on the other. My specimen agrees with Cuvier's figure of Ifyrux copensis in all respects. It is probable that Professor

Fig. ..

Fig. 3.

Fig. 2.-Left anterior font of Phenacodus primavis, one-third natural size (original).
Fig. 3.-light anterior foot of Hyrax capensis; (from Cnricr). Se. scapulnid bone: l. lumar; cu. cuneïform ; p. pisiform; tz. trapezinm: td. trapezoides; m. magnum; u. uncitorm.

Flower has figured some other species under that name, which besides its peculiarities, is of smaller size than the II. cupensis (see Fig. 3).

In April, 18i5* I described the manus of Coryphodor (Bathmodon), showing that the lunar was supported below ly the magnum and by parts of the unciform. This carpus lins the characters of that of IIyrax cupensis, with the last named articulation more extensive. This was the first description of the carpus of the Amblypode. In February, 1sico, \dagger Professor Marsh described the carpus of Lintutherium (Dinocerus), and asserted that the bones "form interlocking series." He however states that "the magnum is supported ly the lunar and not at all by the scaphoid," a state of things which does not belong to the interlocking carpus. The trapezoides does not join the lunar, but the unciform does so, as in Coryphodon. Professor Marsh's figure as to the articu-

[^1]lations of the magnum does not agree with his description, as it makes that bone articulate with the scaphoid. The second description is however correct, and the carpus is identical with that of Coryphodon. (Fig. 4.)
In the Americen Neturalist, June, 1882,* I have shown that the carpus of the Condylurthere is essentially like that of the IIyrocoider. (Fig. .2.)

Fig. 4-Manus of Coryphodon (original). The cuneiform is imperfect.
Fig. 5.-Left posterior foot of Elephas indicus; (from Cuvier). ca. calcaneum : a. astrugalus; u. navicular; cu. cuboid; ec. ectocuneïform; me. mesocuneï-

- torm.

Tarsus.-In the tarsus of the Perissoductyla and Artiodactyla it is well understood that the cuboid extends inwards so as to articulate with the astragalus, giving the latter a double distal facet. It is also well known that the astragalus of the Probuscider has but a single distal articulation, that with the navicular. It is, however, true that the cuboid is extended in wards, but that it articulates with the distal extremity of the navicular instead of that of the astragalus. It was shown by Cuvier that the astragalus of the Hyracoidea articulates with the navicular only, and that the cuboid is not extended inwards so as to overlap the latter. In 1873 Marsh stated that the astragalus of the Amblypodu articulates with both cuboid and navicular. Finally I discovered in 1881 , \ddagger that the astragalus of the Condiglarthred articulates with the navicular only and that the cuboid articulates with

[^2]the calcanemmonly. In the tarsus then there are four types of anticula-

Fig. 6.

Fig. :-

Fig. 6.-Lelt posterior foot of Phenacodus primouvs, one-third natural si\%e (orisimal).
Fig. T. -Rigit posterior font of Hyrax capersis (from Cuvier). Ca. calcanetum; a. astragilus; n. nivieular; cu. cuboil ; ccc. ectoeuneiform; mc. mesocuneiform; enc. entocuncïform.

Fig. 8.
Fig. 8.-l'osterior foot of Coryphodon (original).
tion, which are typified in the Condylarthra, the Iroloxcitea, the Amblypoda and the Artioductyla respectively. (Figs. $\overline{5}$)!.)

Fig. 9.-IIind foot of Poẻbrotherium labiatum (original).
Frg. 10.-Fore leg and foot of Hyracotherium ventieotum (original).
Orders.-From the preceding considerations we derive the following definitions of the primary divisions of the Ungulata, which shonld be called orders. In the first place I find the diversity in the structure of the carpus to be greater in the relations of the magnum and scaphoides, than in the relations between the unciform and the lunar. In other words the trapezoides and magnum are more variable in their proportions than is the unciform. This is directly due to the fact that the reduction of the inner two digits is more usual than the reduction of the external two. I therefore view the relations of these bones as more characteristic. In the tarsus the really variable bone is the cuboid. It is by its extension inwards PROC. AMER. PHYLOS. SOC. XX. 112. 3D. PRINTED NOVEMBER 17, 1882.
that the additional facet of the astragalus is produced. Its relations will therefore be considered rather than those of the astragalus in framing the following detinitions:

Order I. Scaphoides supported by trapezoides and not by magnum, which supports lunar. Cuboid articulating proximally with calcanemm only

Taxeopoda.
Order II. Scaphoides supported by trapezoides, and not by magnum, which supports lunar. Cuboid extended inwards and articulating with the distal face of the navicular. Proboscidere.

Order III. Scaphoides supported iy rrapezoides and not by magnum, which with unciform, supports the lunar. Cuboid extended inwards and articulating with astragalus.

Amblypoda.
Order IV. Scaphoides supported by magnum, which with the unciform also supports the lunar. Cuboid extended inwarls so as to articulate with the astragalus

Diplarthru.
The sulb-orders are defined as follows:

I. TAXEOPODA.

There are two, perhaps three sub-orders of the Taxcopoda; the Hyrucoidea, the Condylarthra, and perhaps the Toxodontia.* The Toxodontia are however not sufficiently known for firal reference.t The sub-orders are defined as follows :
A postglenoid process ; no fibular facet of calcancum, but an interlocking articulation hetween fibula and astragalus; ungual phalanges truncate

Hyracoidea.
A postglenoil process ; no fibular facets on either calcancum or astragalns ; a third trochanter of the femur; ungual phalanges acuminate.

Condylarthra.
There are a gool many other subordinate characters which distinguish the Condylarthra, which will be given in my fortheoming volume iv of the IIaylen Survey, on the Tertiary Vertebrata of Western America.

II. PROBOSCIDEA.

There may be two sub-orders of this order, the Proboscidea and the Toxodontia. I do not know the Carpus of Torodon, but if it does not differ more from that of the elephants than the tarsus does; it is not entitled to subordinal distinction from the Proboscidea. The sub-order of Proboscidea is defined as follows :
A fibular articulation of the calcaucum ; no postglenoid process ; no third
troclanter of femur.
Probascidea.

[^3]
III. AMBLYPODA.

The sub-orders of this order, as I pointed out in 1873, are two, defined as follows :
Superior incisor teeth ; no ali-sphenoid canal ; a thirl trochanter of femur ;
Pentodonte.
No superior incisors, nor ali-sphenoid canal, nor third trochanter of femur ;
Dinoceratu.
The difference between the Proboscitea and the A $\dot{m b l y p o d a}$ consists chiefly in that the navicular of the latter is shortened externally so as to permit the cuboid to articulate with the astragalus. The cuboid has the same form in both. The peculiar character of the navicular gives the astragalus a different form.

IV. DIPLARTHRA.

This order is called by some authors the Ungulata, but that name is also used in the larger sense in which it is here employed. This appears to be its legitimate application, as the name should, if possible, be used for hoofed Mammalia in general, as its meaning implies. The two well known suhorders are the following :
Astragalus truncate distally; number of toes odd, the median one the
largest..... .. . Perissorlactylu.
Astragalus with a distal ginglymus ; number of toes even, the median two
largest. Artiodactylu.
Phylogeny.-The serial arrangement of the bones of the carpus and tarsus seen in the Taxeopoda, is probably the primitive one, and we may expect numerous accessions to that order on further exploration of the early Eocene epochs. The modification seen in the more modern orders of Perissodactyla and Artiodactylu, may be regarded as a rotation to the inner side, of the bones of the second carpal row, on those of the first. This rotation is probably nearly coincident with the loss of the pollex, as it throws the weight one digit outwards, that is on the third and fourth digits, rendering the first functionally useless to a foot constructed solely for sustaining a weight in motion. The alternation of the tro rows of carpals clearly gives greater strength to the foot than their serial arrangement, and this may probably account for the surviral of the type possessing it, and the extinction of nearly all the species of the type which does not possess it. Here is applied again the principle first observed by Kowalevsky in the proximal metapodial articulations. This author shows that the types in which the metapodials articulate with two carpal or tarsal bones, have survired, while those in which the articulation is made with a single carpal or tarsal have become extinct. The double articulation is, of course, mechanically the more secure against dislocation or fracture.
As regards the inner part of the manus I know of no genus which presents a type of carpus intermediate between that of the 7 axeopoda and

Amblypota on the one hand, and the Perissoductyla and Artiodactyla on the other. Stich will however probably be discovered. But the earliest Perissoductylu, as for instance IIyrucotherium, Hyrachyus and Triplopus, posiess the carpus of the later forms, Rhinocerus and Tapirus. The order Amblypoda occupies au interesting position between the two groups, for while it has the carpus of the primitive type, it has the tarsus of the later orders. The bones of the tarsus alternate, thus showing a decided advance on the Tixeopoda. This order is then less primitive than the latter, although in the form of its astragalus it no doubt retains some primitive peculiarities which none of the known Taxeopoda possess. I refer to the absence of trochlea, a character which will yet be discovered in the Tuxeopodte, I have no doubt.

The Tuxeopoda approach remarkably near the Bunotheria, and the unguiculate and ungulate orders are brought into the closest approximation in these representatives. In fact I know of nothing to distinguish the Condylurthra from the Mesodonta, but the ungulate and unguiculate characters of the two divisions. In the Creodonta this distinction is reduced to very small proportions, since the claws of Mesonyx are almost hoofs. Some of the genera of the Periptychida present resemblances to the Creadontu in their dentition also.
The facts already adducel throw much light on the genealogy of the Ungulate Mammalia. The entire series has not yet been discovered, but we can with great probability supply the missing links. In $18 \pi 4$ I pointed* out the existence of a yet undiscovered type of Ungulata, which was ancestral to the Amblypoda, Proboscidea, Perissodactyla and Artiodactyla, indicating it by a star only in a genealogical table. Tliis form was discovered in 1881, seven years later, in the Condylarthra. It was not until laterl that I assumed that the Diplarthra are descendants of the Amblypodir, although not of either of the known orders, but of a theoretical division with bunodont teeth. \ddagger That such a group has existed is rendered extremely probable in view of the existence of the bunodont Proboscider amil Condylarthra. That the Tuxcopode was the ancestor of this hypothetical group as well as of the Proboscidea, is extremely probable. But here again neither of the sub-orders of this group represent exactly the ancestors of the known Amblypodu, which have an especially primitive form of the astragalus not found in the former. In the absence of an anklejoint, the Amblypote are more primitive than any other division of the Ungulata, and their ancestors are not likely to have been more specialized than they. It is probable that a third sub-order of Taxeopoda has existed which had no truchlea of the astragalus, which I call provisionally by the name of Platyerthra.

[^4]The preceding paragraphs were written in May of the present year. On my return home, September 1st, after an absence of three months, I find that various parts of the skeleton of Periptychus* have reached my museum. On examination, I find that the astragalus of that genus fulfils the anticipation above expressed. It is without trochleo, and nearly resembles that of Elephas. As it agrees nearly with that of Phenacodus in other respects I only separate it as a family from the Phenacodontida. One other type remains to be discovered which shall comnect the Periptychide and the hypothetical Hyodonte, and that is a Taxeopod without a head to the astragalus, -unless, indeed, the "Hyodonta" should prove to have such a head. I think the latter the less probable hypothesis, and hence retain the term Platyarthra for the hypothetical Taxeopod without trochlea or head of the astragalus.
These relations may be rendered clearer by the following diagram :
Taxenioda.

Third contribution to the History of the Tertebrata of the Permian formation of Texas. By E. D. Cope.
(Read before the American Philosophical Society, September 15, 18S..)
Since the publication of my second contribution to this subject, \ddagger I have described four additional species. These are, in Bulletin of the U. S. Geological Survey of the Territories ; § Pantylus cordatus and Dimetrodon semiradicatus; in the American Naturalist, \| Eryops reticulutus and Za-

[^5]
[^0]: * Arrangement of the families of Mammals prepared for the Smithsonian Institution. Miscellaneous Collections 230. Nov., 1872.
 \dagger Osteulogy of the Mammalla, p. 266 ; flg. 92.

[^1]: * Systematic Catalogue of the vertebrata of the Eocene of New Mexieo, p. 2t (C゙. S. Geol. Survey W, of looth Mer.).
 \dagger Amez. Journal Scl. Arts. xi, p. 167 ; pl. एi., fig. 2,

[^2]: * Page 522.
 † American Journal Science and Art, Jinuary, 18%.
 \ddagger American Naturalist, 1881, 1. 1017.

[^3]: * See my remarks on Toxodon, Proceedings Amer. Philosoph. Society, 1881, p. 402.
 \dagger The considerable resemblance between the dentition of Toxodon and IIyrax must not be overlooked.

[^4]: * Homologies and OrIgin of Teeth, etc., Jomrnal leademy Nat. Science, 1'hiluda., 18i4, 1). 20.
 + leport U. S. Geol, Survey W. of 100th Mer., p. $2 \times 2,18 \% 7$.
 \#This hypothetleal sub-order is called in the appented seheme, Amblypode Hyodonta.

[^5]: * See American Naturalist, October, 1882.
 † Hypothetical.
 \ddagger Paleontological Bulletin, No. 32, Proceedings American Philosophical Society, 1880 ; the plates, 1881.
 \& Vol. vi, 1881, p. 79.
 |l 1881, p. 1020.

